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ABSTRACT: Here, we evaluate a perhaps unexpected contributor
of per- and polyfluoroalkyl substances (PFAS) to our wastewater,
an input anticipated at every wastewater treatment facility�toilet
paper. In this study, both toilet paper and wastewater sludge were
characterized to explore the magnitude of the potential PFAS
loading into wastewater systems from toilet paper. In both toilet
paper and wastewater sludge, 6:2 fluorotelomer phosphate diester
(6:2 diPAP) was the most prevalent PFAS detected, and toilet
paper usage was estimated to contribute from 6.4 to 80 μg/person-
year of 6:2 diPAP to wastewater−water systems. Our results
suggest that toilet paper should be considered as a potentially
major source of PFAS entering wastewater treatment systems.
KEYWORDS: 6:2 diPAP, biosolids, wastewater sludge, PFCA precursor, PFAS, paper

■ INTRODUCTION
With increasing frequency, scientists and policy makers rely on
measurements from society’s wastewater as sentinels of disease
transmission,1 drug use,2 and chemical exposure and environ-
mental release.3 Per- and polyfluoroalkyl substances (PFAS),
ubiquitous chemicals now documented throughout the natural
environment,4 wildlife,5 human blood,6 and breastmilk,7 have
been similarly documented in wastewater,8 particularly the
residual sewage sludge from biological wastewater treat-
ment.9,10

As PFAS occur in numerous household and personal care
products,11,12 the measurement of PFAS in wastewater
residuals comes as no surprise, but as much of the world’s
sewage sludge is land applied,13,14 the regulatory community
now wrestles with how best to address the human health and
environmental ramifications of PFAS discharges. Understand-
ing the sources of PFAS and their respective contribution to
wastewater will be key to prioritizing action�possible sources
include the soaps, shampoo, and makeup that we wash down
the drain,11 clothes and related cleaning products in our
laundry,15 and discharges from commercial and industrial
operations.16,17

Here, we evaluate a perhaps unexpected contributor of
PFAS to our wastewater, an input anticipated at every
wastewater treatment facility�toilet paper. PFAS have been
documented in papers products18 and are a known wetting
agent additive used to increase the efficiency of the pulping
process.19 The use of PFAS by paper mills has already been
identified as a source of environmental contamination20 and
could result in residual PFAS in toilet paper. Furthermore,

toilet paper is often manufactured from recycled paper fibers
(which often can contain PFAS).21,22 We obtained packaged
toilet paper from four world regions (Africa, North America,
South and Central America, and Western Europe) and assayed
the concentration of 34 PFAS. Additionally, we analyzed the
same suite of PFAS in sewage sludge from eight wastewater
treatment plants in Florida, United States (US), to comple-
ment the existing body of knowledge on PFAS in sewage
sludge, and these data, along with estimates of average toilet
paper usage and sludge generation, allowed us to assess the
relative contribution of toilet paper to the PFAS loading, at
least for the dominant detectable species of PFAS, in
wastewater sewage sludge.

■ MATERIALS AND METHODS
Sample Collection and Extraction of Toilet paper.

Samples of toilet paper were collected from November 2021 to
August 2022 by a volunteer network of students and
professors; individuals were given instructions to document
the location of toilet paper collection, the toilet paper recycled
content, brand, and a picture or physical label of the toilet
paper if possible (see Figure S1.). Samples were either
collected as entire rolls or 10 g subsamples. Samples were
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stored in sealed high-density polyethylene (HDPE) containers
for no more than 180 days at 25 °C.
Samples were extracted following a modified method

published by Timshina et al.23 In short, triplicate 1 g
subsamples of toilet paper were transferred to 50 mL falcon
tubes and spiked with 40 μL of an isotopically labeled internal
standard mixture (see Tables S1 and S2). Extraction was
repeated three times in the following manner: after adding 10
mL of 0.3% methanolic ammonium hydroxide, samples were
agitated on a rotisserie rotator for 45 min, centrifuged for 10
min at 4000 rpm, and supernatants transferred to 50 mL
centrifuge tubes. Extracts were evaporated to approximately 1
mL in a Biotage TurboVap before supernatants from the 3-fold
extraction were combined. For purification, combined extracts
were vortexed for 30 s with 50 mg ±10 mg of ENVI-Carb
graphitized activated carbon, centrifuged for 10 min, and
transferred to new 15 mL tubes. The final extracts were
evaporated to 1 mL and aliquoted for analysis. Extracts were
stored no more than 30 days at −20 °C until analysis (see
Table S4 for PFAS concentrations in toilet paper). Extraction
efficiencies were measured using pooled samples spiked with
mass-labeled PFAS (additional information about the QC
process and reported extraction efficiencies can be found on
page S4 and Table S10 of the SI).
Sample Collection and Extraction of Wastewater

Sludge. Wastewater sludge samples were collected from eight
facilities in Florida, US, between June 2021 and August 2021.
Samples were collected in 23 L HDPE buckets using stainless

steel shovels washed with methanol prior to and between
collections. Samples were transported to the laboratory,
aliquoted into 2 L HDPE bottles, and stored at −20 °C
until analysis. The sample extraction method is a modified
version of a previously reported solid matrix extraction
method.24

Prior to extraction, wastewater sludge samples were
homogenized by rotating for 20 min at 70 rpm and air-dried
in a fume hood for a period of 3 days. A subsample of air-dried
wastewater sludge was taken to complete dryness at 110 ± 5
°C according to ASTM D221625 to determine the moisture
content for calculating PFAS concentrations on a per dry mass
basis. Air-dried wastewater sludge samples were extracted in
triplicate and divided into 10.0 ± 0.1 g subsamples, added to a
50 mL polypropylene tube, and spiked with 50 μL of an
isotopically labeled PFAS IS mixture. Then, 8.5 mL of 0.3%
ammonium hydroxide in methanol was added to the sample,
and the mixture was vortexed for 1 min, sonicated for 30 min,
and rotated in an end-over-end fashion for 30 min. The sample
was centrifuged at 4000 rpm for 10 min, and the supernatant
was removed using a pipet. An additional 8.5 mL of 0.3%
ammonium hydroxide in methanol was added to the remaining
sample, and the vortex, sonication, rotation, centrifugation, and
supernatant removal steps were repeated. The combined
extracts (17 mL) were concentrated to 10 mL under a gentle
stream of high purity nitrogen gas (Biotage TurboVap II) at 35
°C. Extracts were then stored for less than 30 days at −20 °C
until analysis. Evaporated extracts were aliquoted into 200 μL

Figure 1. Concentrations of 6:2 diPAP and relative distribution of detected PFAS in toilet paper. (A) Concentration of 6:2 diPAP in toilet papers
sampled from different world regions. (B) Concentration of 6:2 diPAP in toilet papers labeled as containing recycled paper compared to
nonrecycled toilet papers. (C) Proportion of each PFAS detected across all toilet paper samples relative to the total mass of ∑6PFAS. The
proportion of each PFAS is as follows: 91% (6:2 diPAP), 3.7% (8:2/6:2 diPAP), 1.3% (8:2 diPAP), 3.3% (PFHxA), 0.6% (PFOA), and 0.4%
(PFDA).
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polypropylene autosampler vials for analysis by liquid
chromatography and tandem mass spectrometry (see Tables
S5−S8 for concentrations of detected PFAS in wastewater
sludge samples).
LC-MS/MS Analysis. Toilet paper and wastewater sludge

extracts were analyzed via targeted ultrahigh pressure liquid
chromatography-tandem mass spectrometry (UHPLC-MS/
MS) using a Thermo Vanquish UHPLC system (Waltham,
MA, US) coupled to a Thermo Quantis triple quadrupole mass
spectrometer (operated with electrospray in negative ioniza-
tion mode and scanning via scheduled selected reaction
monitoring (SRM)).
A Gemini C18 (100 mm × 2 mm; 3 μm) column from

Phenomenex was used for chromatographic separation. Water
[A] and methanol [B] both containing 5 mM of ammonium
acetate were used as the mobile phases. The gradient elution
was set as 0−3 min 10% B, 3−4.5 min 10%−35% B, 4.5−12.5
min 35%−95% B, 12.5−12.51 min 95%−99% B, 12.51−19
min 99%, and then equilibrated to initial conditions in 30 min.
The temperature of the autosampler was 4 °C. The flow rate
was 0.5 mL min−1, and injection volume was 10 μL. Water,
methanol, and ammonium acetate used in the study were all
Optimal grade purchased from Fisher Scientific. Scheduled
SRM mode (monitoring two transitions, if possible) was used
to detect and quantify each PFAS (native and mass-labeled
species are shown in Tables S1 and S2 of the SI). The most
intense transition was used for quantification, while the second
transition was used to confirm identification (if applicable).
For PFAS where no isotopically labeled standard was available,
an alternative labeled standard, either similar by structure or
retention time, was selected for quantitation. Table S2 displays
the mass spectrometric scan parameters (and transitions) for
all targeted PFAS, while Table S3 displays additional LC-MS/
MS parameters. Additional information regarding the QA/QC
protocol, extraction efficiencies for each matrix, and data
analysis are available on pages S4−S5 of the SI.

■ RESULTS AND DISCUSSION
Of the 34 PFAS analyzed, six were detected in the toilet paper
samples: perfluorohexanoic acid (PFHxA), perfluorooctanoic
acid (PFOA), perfluorodecanoic acid (PFDA), 6:2 fluoro-
telomer phosphate diester (6:2 diPAP), 6:2/8:2 fluorotelomer
phosphate diester (6:2/8:2 diPAP), and 8:2 fluorotelomer
phosphate diester (8:2 diPAP). By far the largest single PFAS
among those detected was 6:2 diPAP, representing 91% ± 8%
of the total mass of PFAS on average. A previous study
identified elevated diPAP concentrations in paper mill wastes
streams, suggesting that diPAPs could be introduced during
production.26 Analysis of variance (ANOVA) between regions,
and a t test between recycled and nonrecycled samples, found

that concentrations of 6:2 diPAP did not differ among regions
nor those identified with recycled content (p >. 05). These
comparisons, along with the distribution of PFAS detected
among toilet paper samples, are shown in Figure 1 (A) - (C).
Samples of wastewater sludge were collected and charac-

terized for PFAS to explore the magnitude of the potential
PFAS loading into wastewater systems from toilet paper.
DiPAPs were similarly among the most abundant PFAS
measured in wastewater treatment sludges, though they
represented a smaller contribution than in the toilet paper
itself. The sum of three diPAPs (6:2, 62:8:2, and 8:2 diPAP) in
the eight sludge sources tested contributed 54% ± 15% of the
∑34PFAS, on average. Concentrations of 6:2 diPAP ranged
from 27.2 to 750 ng/g with an average concentration of 141
ng/g (PFAS concentrations can be found in Tables S5−S8 of
the SI). Two studies on North American sewage sludge
similarly identified diPAPs as the most abundant PFAS
measured with mean concentrations of 6:2 diPAP at 164 and
121 ng/g.26,27 Interestingly, reported results from Europe and
China found diPAPs to contribute less to the total mass of
PFAS present in wastewater sludge, with studies from Sweden,
France, and China reporting mean concentrations of 2.0, 2.9,
and 11.6 ng/g for 6:2 diPAP, respectively, which represented
3%, 2%, and 8% of the total mass PFAS measured.28−30

The use of toilet paper, and whether it is flushed down the
toilet or disposed of with trash, varies regionally as a function
of cultural norms, economic means, and sanitation infra-
structure. Reported per capita toilet paper use in regions such
as Japan, the US, Canada, and Western Europe ranges from 15
to 25 kg/person-year, while estimated use in Latin America,
China, and Africa ranges from 2 to 10 kg/person-year.31 To
estimate per capita mass of 6:2 diPAP entering wastewater
systems from toilet paper, a mean 6:2 diPAP concentration of
3.2 ng/g from the 21 samples analyzed was applied to the
range of reported toilet paper usage rates. This results in an
annual 6:2 diPAP contribution from toilet paper of 6.4 to 80
μg/person-year.
We next examined the contribution of toilet paper to the

total 6:2 diPAP found in wastewater sludge using region-
specific assumptions (concentration in sludge, per capita toilet
paper use, and per capita sludge generation; Table 1). The
estimated contribution from toilet paper was lowest in the US
(3.7%) and Canada (3.5%) and highest in Sweden (35%) and
France (89%). The larger contribution observed in the two
European data sets stems from the lower reported 6:2 diPAP
sludge concentrations compared to those measured in North
America (by an order of magnitude). Comprehensive PFAS
data on regional wastewater slude sources are remarkedly
limited, but in those nations where multiple data sets were
available (US and Sweden), each nation’s data were of the

Table 1. Fraction of 6:2 diPAP in Wastewater Sludge Expected to Come from Toilet Papera

Country

Median 6:2 diPAP
concentrations in wastewater

sludge (ng/g)
Average toilet paper usage
per capita (kg-person/year)

Wastewater sludge generated
per capita (kg-person/year)

Fraction of 6:2 diPAP in wastewater
sludge attributed to toilet paper usage (%)

United
States27,31,32

82 26 27 3.7

Canada26,31,32 85 26 28 3.5
China30,31,33 12 7 28 6.9
Australia32,34,35 32 13 18 7.2
France29,31,36 1.7 10 21 89
Sweden28,31,36,37 5.6 15 25 35
aThe methodology for determining the fraction of 6:2 diPAP in wastewater sludge attributed to toilet paper usage is presented in the SI.
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same magnitude (median of 7.0 and 1.8 ng/g in the Swedish
studies and 53 and 100 ng/g in the US studies).
Wastewater Implications. Our results suggest that toilet

paper should be considered as a potential significant source of
PFAS entering wastewater treatment systems. The lower
estimated 6:2 diPAP contribution derived from the North
American data sets, despite the greater reported use of toilet
paper in this region, suggests that other 6:2 diPAP sources,
such as cosmetics,11 textiles, and food packaging,38 deserve
attention, especially given the apparently smaller contribution
of these sources based on data sets from France and Sweden.
Previous work from D’eon et al.26 suggests that diPAPs are a
prevalent North American chemical contaminant. Perhaps
regional consumer product choices and discard practices can
inform strategies to reduce wastewater borne PFAS loads. This
reduction in PFAS is critical, since wastewater effluent and
sludge are commonly reused for irrigation and/or land
application;32 research has already shown that these two
pathways pose a risk for human and environmental exposure to
PFAS.39

Complicating this discussion, however, is the fact that the
dominant PFAS family observed in toilet paper and wastewater
treatment sludge, the diPAPs, are precursor species and have
the capacity to be transformed into terminal PFAS. Terminal
species�such as PFHxA, PFOA, or PFDA�are formed from
the biologically mediated transformation of 6:2 diPAP and
other diPAP homologues,4,40 and these chemicals are the
growing targets of regulatory attention due to the expanding
body of knowledge regarding their human health and
environmental impacts.41 Additional research is needed to
explore whether toilet paper might be a greater contributor to
total PFAS in North American wastewater and if the diPAPs
from toilet paper might be transforming through the
wastewater collection and treatment system. Furthermore,
PFAS known as triPAPs and larger analogs have been detected
in the environment.42 These compounds may also be present
in toilet paper; however, determining the quantity of these
species is difficult due to the lack of available standards and the
limitations of the total oxidizable precursor (TOP) assay for
diPAP-containing and/or high organic matter matrixes.27,43
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